Bulk Wave Characterization of Laminated Composites
نویسنده
چکیده
Composite materials are currently seeing wider use in the aerospace and automobile industries. Composites offer many advantages over conventional materials, such as a greater strength to weight ratio and the ability to engineer their mechanical properties to a specific task. The major problems associated with composites are cost and reliability. Like virtually all engineering materials, composites can have flaws which may compromise their strength and reliability. The ability to detect these flaws in a reliable, cost effective fashion is significantly essential in the utilization of composite materials in critical structural areas. Currently, nondestructive evaluation using ultrasonic wave amplitude analysis, is most often used to inspect materials for flaws. This method can detect gross macroscopic flaws such as delamination or cracks, but more subtle flaws in the individual layers of a composite such as incomplete cure or low fiber volume ratio, cannot be found using conventional inspection techniques. Full stiflhess modulus reconstruction, using acoustic wave velocities, is an alternative way to nondestructively determine the exact mechanical properties of a given composite part. Much research has been done in the area of modulus reconstruction of single layered composites [1-3]. The objective of this paper is to develop schemes for modeling multi-layered composites commonly seen in practice. Two basic methods of modeling composites are presented here; the layered method and the averaged method. The layer method treats each ply as a separate material. The averaged method consists of taking all the layers and averaging their material properties together. This paper will look at the differences between these two methods and will show how the relationship between the wavelength and the ply thickness determines which theory will apply.
منابع مشابه
High Curie temperature and enhanced magnetoelectric properties of the laminated Li0.058(Na0.535K0.48)0.942NbO3/Co0.6 Zn0.4Fe1.7Mn0.3O4 composites
Laminated magnetoelectric composites of Li0.058(Na0.535K0.48)0.942NbO3 (LKNN)/Co0.6Zn0.4Fe1.7Mn0.3O4 (CZFM) prepared by the conventional solid-state sintering method were investigated for their dielectric, magnetic, and magnetoelectric properties. The microstructure of the laminated composites indicates that the LKNN phase and CZFM phase can coexist in the composites. Compared with the particul...
متن کاملGuided Wave Propagation Study on Laminated Composites by Frequency-Wavenumber Technique
Toward the goal of delamination detection and quantification in laminated composites, this paper examines guided wave propagation and wave interaction with delamination damage in laminated carbon fiber reinforced polymer (CFRP) composites using frequency-wavenumber (f-k) analysis. Three-dimensional elastodynamic finite integration technique (EFIT) is used to acquire simulated time-space wavefie...
متن کاملThe effect of heterogeneity on plane wave propagation through layered composites
When laminated composites are subjected to impact loading, the material response is critically determined by the interactions of multiple waves generated at the laminate interfaces. Due to the high complexity arising from the architectural details of composites, layered heterogeneous materials have been studied as the model system to understand the impact behavior of engineering composites. Pre...
متن کاملA Numerical and Analytical Solution for the Free Vibration of Laminated Composites Using Different Plate Theories
An analytical and numerical solution for the free vibration of laminated polymeric composite plates with different layups is studied in this paper. The governing equations of the laminated composite plates are derived from the classical laminated plate theory (CLPT) and the first-order shear deformation plate theory (FSDT). General layups are evaluated by the assumption of cross-ply and angle-p...
متن کاملApplication of Pulse Method to Incremental Slitting Measurement of Residual Stresses in Laminated Composites
In this research, the incremental slitting method was employed to determine throughthickness residual stress profile of a carbon/epoxy laminate. The method involves measuring strains at the back surface of the stressed specimen, while a narrow slit is cut by a CNC milling machine progressively from the top surface of the specimen. "Pulse Method" was selected as the computational approach for th...
متن کامل